
Depth-First Search is an algorithm for traversing or searching a directed graph. It explores as
deeply as possible along each branch before backtracking. It can be implemented either using
recursion or iterative (a loop without recursion) using a stack.

Here’s the iterative version of the algorithm:

Initialization:
1. Create a stack to store nodes to visit.
2. Create a Boolean array called visited to track visited nodes (initially all false).
3. Choose a starting node.
4. Push the starting node onto the stack.

Iteration:
5. While the stack is not empty:

6. Pop a node from the stack
7. If the node has not been visited:

8. Mark the node as visited.
9. Process the node (e.g., print its value).
10. For each neighbor of the current node:

11. If the neighbor has not been visited, push it onto the stack.

Termination:
The algorithm terminates when the stack is empty, indicating that all reachable nodes
have been explored.

Breath-First Search is an algorithm for finding the shortest paths in an unweighted graphs from
a starting node to all other reachable nodes. It explores a graph level by level, starting from the
root node. It systematically visits all nodes at the current depth before moving to the next depth
level. BFS uses a queue to keep track of the nodes to be visited, ensuring a breadth-first
exploration.

Here’s the iterative version of the algorithm:

Initialization:
1. Create a queue to store nodes to visit.
2. Create a Boolean array called visited to track visited nodes (initially all false).
3. Choose a starting node.
4. Enqueue the starting node to the queue.

Iteration:
5. While the queue is not empty:

6. Dequeue a node from the queue
7. For each unvisited neighbor of the dequeue node:

8. Mark the neighbor as visited.
9. Process the node (e.g., print its value).
10. Enqueue the neighbor to the queue.

Termination:

The algorithm terminates when the queue is empty, indicating that all reachable nodes
have been explored.

